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Abstract

Deconstruction of the FT8 open-source FORTRAN code provides insight on the synchroniza-
tion algorithm. The heart of the synchronization scheme is a Costas Array, a specially designed
square matrix that was invented in 1965 to improve the reliability of underwater sonar. An
intuitive explanation of the Costas Array is given, followed by a detailed description of its
implementation in the FT8 decoder.
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Introduction. FT8 is a sub-mode of WSJT-X that has become extremely popular for working DX because
it enables fast, efficient communication in marginal, weak signal conditions. Forward Error Correction
makes this possible, but it requires that transmitting stations and receiver be synchronized to better than
20 ms in time and less than 1 Hz in frequency. Such precision is generally not possible with amateur radio
equipment using external reference clocks, so the protocol must supply its own synchronization signal.
The different WSJT-X modes accomplish this in a variety of ways, depending on the design requirements.
FT8 uses a 7x7 Costas Array [1]. The FT8 decoder performs a coarse search for Costas synchronization
symbols in the 15-second frequency waterfall. Synchronization signals that are above a defined energy
threshold are identified as candidates for additional decoding. Candidates are adjusted to have initial time
and frequency offset accuracy of about 40 ms and 3 Hz. The synch signal of each candidate is then used in
a second calculation that performs a quasi-coherent cross-correlation to fine-tune the time and frequency
alignment between one or more transmitting stations and the reference frame of the decoder.

Principle of the Costas Array. The following pictorial example can provide an intuitive understanding.
An example of a non-Costas array is the diagonal 3x3 matrix M . All the matrix elements are zero except
along the diagonal at positions M1,1,M2,2, and M3,3. Render the matrix as a mask, with transparent
holes at the three diagonal positions (Figure 1, left). The mask is the frame of reference. An identical
signal array is configured with LEDs at the same positions as the mask holes (Figure 1, right). Each LED
contributes 1 unit of signal. To get the maximum light transmission of 3 through the mask, it must be
perfectly aligned with the LED array.

Figure 1: 3x3 diagonal mask (left) and LED array (right).
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Figure 2: Misalignment of the mask by 1 array element on each axis (left); Transmission approaching maximum
(right).

A systematic search of x and y is used to find the maximum brightness. Misalignment by an amount
∆x = −1 and ∆y = +1 is shown in Figure 2, left. Incremental, trial-and-error movement along x and y
eventually locates the three holes (Figure 2, right), until the maximum shown in Figure 1 (right) is attained.
The amount the mask must displaced to attain maximum brightness measures the x and y offsets of the
signal from the reference.

Now assume one of the LEDs is off at either position M1,1 or M3,3. A maximum transmitted signal of 2
can be obtained at two different alignments: i) correct overlap or ii) a single element displacement in x
and y as shown in Figure 2 (left). Because the maximum achievable brightness is reduced from 3 to 2, we
would know that one LED is off. Loss of one LED, however, introduces alignment ambiguity.

Figure 3: 3x3 Costas Array (left). Position offsets ∆x and ∆y between signal and reference frames are unambiguously
located even with one LED off (right).

The Costas Array shown in Figure 3 (left) solves this problem. Holes and LEDs are located at array
positions M1,2,M2,3, and M3,1. If any one of the three LEDs is dark, the two remaining LEDs can be used
to align the mask with no positioning ambiguity (Figure 3, right). Ambiguity returns if two or more LEDs



are off.

The 3x3 Costas Array assures alignment accuracy even when any one of the LEDs is compromised. Dark
LEDs represent missing or corrupt data. This situation often occurs on noisy channels such as encountered
in sonar, radar, and weak-signal communications. Maintaining critical time and frequency synchronization
between transmitted and reflected signals in submarine sonar motivated research in this area by J.P. Costas
[2].

In the above example, the Costas Array is used for two-axis (x, y) positional accuracy. In communication
applications, the array dimensions are changed to time and frequency.

Costas Array in FT8. The square matrix representing the Costas Array is implemented with discrete
time steps (columns) and frequency steps (rows). In FT8, there are 7 sequential time steps and 7 non-
sequential frequency steps. The row values are the integers 3,1,4,0,6,5,2 and the time steps run from 1 to 7
as depicted in Figure 4. This is just one of the 200 possible 7x7 Costas Arrays [3]. The unique footprint of
the Costas Array allows unambiguous alignment of the data stream at the receiving station. The decoder
will look for the expected time sequence of symbols in the received message and attempt to establish the
needed temporal and frequency synchronization between the two stations.

Figure 4: 7x7 Costas Array used in FT8 v2. The time and frequency steps are 160 ms and 6.25 Hz, respectively.

The 7x7 Costas Array is rendered by 7 of the 8 available FT8 tones, occupying 7 time steps. The sequence
of tones is 3,1,4,0,6,5,2. Each tone is one symbol of duration 160 ms and 7 symbols require 1.12 seconds.
To compensate for drift and fading that may occur over the 12.64 second duration of an FT8 transmission
and to accommodate time synchronization offsets in the range: −2 ≤ ∆t ≤ +3 seconds, the same Costas
array is inserted at the beginning, middle, and end of each message. This means that 26.6% of each FT8
message is allocated to synchronization.

Figure 5 (left) is a time plot of the imaginary part of the 7x7 Costas Array sampled at 12000 S/sec. This
signal modulates the audio carrier frequency fc selected by the FT8 operator for transmission. In version
2.1 of WSJT-X, Frequency Shift Keying (FSK) has been replaced with Gaussian FSK (GFSK). Transitions



Figure 5: Left: The 7x7 Costas Array rendered as a sequence of GFSK symbols at 6.25 Hz multiples. The audio
carrier frequency fc has been set to zero for clarity. Right: Comparison of FSK and GFSK at the transition between
Tone 4 and Tone 0.

Figure 6: Arrangement of the 7x7 Costas Array in the transmitted FT8 signal. The synch tones occupy 21 of the
79 symbol bins. The information bits, Forward Error Correction, and Cyclical Redundancy Check are placed in the
remaining 58 bins.



between the tones (symbols) are not as abrupt (Figure 5, right), resulting in a significant reduction of signal
bandwidth [4].

GFSK modulation is identical for the 21 synchronization tones and 58 encoded message symbols. Legacy
FT8 (in versions 1.9 and earlier) uses a 7x7 Costas Array that is the reverse sequence of the current version,
ie. 2,5,6,0,4,1,3. This was changed in version 2 so that the new decoder could potentially recognize signals
from earlier versions of the program. The location of synch tones, however, remains the same (Figure 6).

There is additional bandwidth required for each symbol (tone) to accommodate the baud rate, ie. 6.25 Hz.
Tone 0 occupies frequency f0 = fc ± 3.125 Hz. Tone 7 is f7 = fc + 43.75 ± 3.125 Hz. The total FT8
signal resides in the frequency span: f0 = fc− 3.125 to f7 = fc + 43.75 + 3.125 Hz, which defines the 50
Hz modulation bandwidth.

Decoding. Signals may appear on a multitude of carrier frequencies anywhere in the receiver audio
passband with an unknown time offset relative to the receiver clock. Figure 7 illustrates two trains of FT8
synchronization symbols. The audio carrier frequencies are located at Tone 0; the time offset between the
two signals is slightly greater than one symbol bin.

Figure 7: Costas Array symbol sequence for two FT8 signals in the receiver passband. The signals are offset in time
by slightly greater than one symbol bin (0.16 s/symbol). Eight of the 79 symbol bins are shown.

The first task of the decoder is to establish time synchronization with any incoming data. This is accom-
plished in a series of operations depicted by the block diagram in Figure 8. Each block is described in more
detail below.

The received FT8 signal is sampled at 12000 S/sec for 15 seconds, generating 180,000 16-bit audio samples.
This corresponds to 180k x 16 = 2.88 Mb of data. Decoding does not commence until all the data has
been acquired.

The decoder begins by searching the data for synchronization signals. This is handled by the FORTRAN
subroutine sync8.f90 in the FT8 source code. The audio energy spectrum is calculated at sequential,
partially overlapping time windows. The time increment is 1/4 of the duration of a single FT8 symbol,



Figure 8: Block diagram of the FT8 synchronization process.

i.e. 40 ms. 372 individual spectra are obtained, with the last 120 ms of the 15 second data capture ignored.
Spectra are generated by performing a sequence of 372 time-partitioned Fast Fourier Transforms (FFTi

where i=1,2,...372) with data collected from 160 ms time windows, but interleaved by 1/4 symbol. For
example, FFT1 is evaluated for the interval 0–160 ms, FFT2 is 40–200 ms, FFT3 is 80–240 ms, FFT4 is
120–280 ms up to FFT372 for the final 160 ms time segment. This is illustrated for the first ∼ 1 second of
the received signal in Figure 9.

Each 160 ms sample interval is zero-padded to produce a 320 ms input signal for the FFT calculation;
the FFTi spectra span a frequency range from 3.125 Hz to 6 kHz. The operator sets the FT8 waterfall
frequency range considerably smaller than this, eg. 200–2500 Hz, so only the calculated FFT range matching
the waterfall is used.

The decoder next attempts to obtain time synchronization between the receiving station and a possible
transmitting station at an audio baseline frequency fc. There can be many received stations in the audio
waterfall, each with a different fc and time synch offset. The data at fc is scanned for the correct synch
tones employing 125 different start times t0 in the range t0 = 0.5 ± 2.5 seconds, where the +0.5 second
offset accounts for the delayed start of transmit. The time search increment is also 40 ms.

Starting at the lowest frequency that was set in the waterfall (eg. fc = 200 Hz) the decoder sums the

Figure 9: Searching for the synch signal at the start of the captured FT8 waveform. FFTs are calculated in the
time intervals depicted by the horizontal bars. If the transmitter and receiver are perfectly aligned, the 7 elements of
the first Costas array will be in the intervals FFT1, FFT5, FFT9, FFT13, FFT17, FFT21, and FFT25 (not shown).
The decoder scans 125 different time offsets looking for the synch tones. The vertical axis in this plot is meaningless.



spectral energy density at the expected locations of the 7 Costas synch signals. As an example, when t0
= 0 the energies at the following 7 frequency locations are summed: fc + 18.75 Hz in FFT1, fc + 6.25 Hz
in FFT5, fc + 25 Hz in FFT9, fc in FFT13, fc + 37.5 Hz in FFT17, fc + 31.25 Hz in FFT21, and fc +
12.5 Hz in FFT25. These are slices of the time-partitioned energy spectrum corresponding to the Costas
array sequence [3,1,4,0,6,5,2]. This synch sum ta is normalized to the spectral content in all of the lowest 7
frequency bins for each of the 7 time intervals. The normalization sum t0a is obtained by adding frequency
bins 0–6 in FFT1, FFT5, FFT9, FFT13, FFT17, FFT21, and FFT25. There are 7 components in the sum
ta and 49 components in t0a.

This calculation is repeated at the expected location of the remaining two synch signals. For the present
example with t0 = 0, these are time positions 5.76 seconds (Costas tones expected in FFT144, FFT148,
FFT152, FFT156, FFT160, FFT164, FFT168) and 11.52 seconds (Costas tones expected in FFT288, FFT232,
FFT236, FFT240, FFT244, FFT248, FFT252). This produces synch sums tb and tc and normalization sums t0b
and t0c, respectively. The decoder then generates sums t = ta+tb+tc and tN = (t0a+t0b+t0c−ta−tb−tc)/6.
tN represents the averaged energy content of the 6 nominally empty frequency bins at each of the 7 time
positions. The final normalized synch signal is Sabc = t/tN .

For each fc, the decode algorithm looks for the maximum total synch signal while scanning 125 time
increments in the range −2 ≤ t0 ≤ 3 seconds. For start times t0 < 0, some or all of the Costas synch signal
ta will not be available. To accommodate this, a second normalized synch signal Sbc is calculated as above,
except ta and t0a are ignored. The larger value of either Sabc or Sbc is recorded as the total synch signal at
fc for each of the 125 start times. Normalization allows Sabc and Sbc to be directly compared despite their
different data counts.

The frequency fc is incremented by 3.125 Hz and the above time synch calculation repeated. The frequency
iteration process continues until the highest frequency that was set in the waterfall is reached. For waterfall
audio in the range fc = 200–2500 Hz, there will be 737 x 125 = 92,125 synchronization calculations
performed for each 15-second FT8 receive interval.

A 2-dimensional array holds the best (strongest) total synch signal for each fc and the corresponding index
of its time offset. This array is sorted from weakest to strongest signals using the FORTRAN subroutine
in indexx.f90 [5]. A baseline synch signal is established at the approximate midway point of the sorted
array range; all synch signals in the array are normalized to this value. This means only about half of the
captured audio spectrum will have synch signals with a normalized value ≥ 1.

Starting with the strongest normalized synch signal, the decoder checks for values ≥ 1.5. If the strongest
normalized synch signal is < 1.5, the decoder exits. Signals above the 1.5 threshold are tagged as candidates
for further decoding. The audio baseline frequency fc, time synch offset, and normalized synch signal of
each candidate are recorded. As many as 200 candidate signals can be acquired. If there are two candidates
within 4 Hz of each other, however, the weaker candidate is discarded.

At this point, synchronization has been established to 3.125 Hz and 40 ms for every candidate signal in the
waterfall display. Greater accuracy is possible using coherent detection with the FORTRAN subroutine
ft8b.f90.

The first operation in ft8b is to reacquire the spectrum of the complete 15-second FT8 signal. This
is accomplished with a call to the subroutine ft8 downsample.f90, which performs a FFT. A frequency
resolution of 0.0625 Hz is obtained by zero-padding the time signal by 1 second to make 192,000 total time
steps at 12000 samples/second.

There is a carrier frequency fc associated with each candidate. The decoder locates fc in the spectrum and
slices out the portion fc − 9.375 Hz to fc + 53.125 Hz representing 1000 sample points. fc is subtracted



from this array subset to baseline the spectrum at fc = 0 Hz. An inverse FFT is then performed on
the frequency-shifted spectrum to generate a complex time domain signal (i.e. in-phase and quadrature,
phase-shifted +90◦) without the carrier. The 16-second complex temporal waveforms have 3200 points,
giving 5 ms resolution. Each candidate signal is re-cast in complex form to enable tighter synchronization
and eventual decoding.

The decoder enters subroutine sync8d.f90 and generates a complex reference waveform with k = 7 symbols
Rk,m representing the FT8 Costas Array. Because the correlation calculations make a heavy demand on the
processor, the sampling rate is reduced by a factor 60 compared to the waveform shown in Figure 5. The
Costas Array used in this subroutine has m = 32 samples/symbol separated by 5 ms. GFSK smoothing is
not effective at the coarser resolution, so the reference waveforms are rendered with standard FSK (upper
2 traces in Fig. 10).

Figure 10: Real (top) and imaginary (middle) components of the reference complex Costas Array waveform with
32 points/symbol as generated by subroutine sync8d.f90. There is padding with Tone 0 on both sides for the cross-
correlation calculations. The bottom waveform depicts the imaginary component of a simulated received signal with
Gaussian amplitude white noise; signal-to-noise ratio is 2:1. Not shown is a similar noisy waveform for the real
component. Waveforms are displaced vertically for clarity.

The candidate signal is trimmed to 3125 data points separated by 5 ms and contains up to three Costas Ar-
ray synch waveforms Cj,k,m located at the beginning (j=1), middle (j=2), and end (j=3). Each candidate
has time synchronization already established to ± 40 ms, so it is only necessary to search within this 80 ms
range with n = 17 time-step iterations of 5 ms/step. This is implemented with a cross-correlation between
the received symbols C and reference symbols R in the Costas Array as follows. A complex product is
calculated for each received symbol C at each Costas Array location j:



zj,k =
32∑

m=1

Cj,k,mR
∗
k,m (1)

where each of them = 1−32 elements (i.e. sample points) of a symbol C is multiplied with the corresponding
element in the complex conjugate of the reference symbol R∗. The squared amplitude of each calculation
in Equation (1) is summed to produce the aggregate synchronization signal:

Tn =
7∑

k=1

[
|z1,k|2 + |z2,k|2 + |z3,k|2

]
(2)

Tn is evaluated at n = 17 different time alignments between C and R: ∆t = −40,−35, ...0...+ 35,+40 ms.
At each time step n, j × k = 21 individual correlations are performed, each with duration of one symbol,
i.e. 160 ms. The decoder looks for the maximum value of Tn and sets this as the final time synchronization
point.

Long duration correlations using the entire 7-symbol sequence of the Costas Array can, in principle, generate
sharper peaks. This is not practical because signal coherence may be lost over the propagation path on
a timescale approaching 1 second. Moreover, the carrier phase may be misaligned with respect to the
reference Costas Array waveform anywhere in the range 0−2π. The summed correlation power of individual
symbols given by Equation (2) produces a useful peak without any knowledge of the carrier phase offset.
Coherence is only required for the duration of each 160 ms symbol.

The operation described above can be illustrated by calculating cross-correlations of the reference Costas
Array with simulated received signals. Representative waveforms are shown in Figure 10. The top and
middle waveforms are the real and imaginary (quadrature) components, respectively, of the reference Costas
Array, i.e. without noise. The bottom waveform shows the imaginary component with additive Gaussian
white noise at a signal-to-noise ratio of 2:1 as might be encountered with a weak received signal [6].

Calculated cross-correlations for a single FT8 Costas Array [3,1,4,0,6,5,2] are shown in Figure 11, repre-
senting just one term on the right side of Equation (2). A noise-free sequence of 7 symbols establishes
the synchronization point to better than 10 ms (solid curve). The three dashed curves show the effect of
additive Gaussian white noise at a signal-to-noise ratio of 2:1. The correct synchronization point is still
located with an accuracy of ± 10 ms. This illustration is for a single Costas Array sequence; there may be
as many as two more additional signals zj available on the received signal to produce a useful maximum
in T .

Fine frequency adjustment is performed with a cross-correlation using the same subroutine sync8.f90 and
procedure outlined above. The frequency is scanned in n = 11 increments of ∆f = 0.5 Hz/step over the
range ± 2.5 Hz. This corresponds to an incremental phase scan of ∆φ = −4.5◦,−3.6◦, ...0◦...+ 4.5◦ in an
attempt to peak the cross-correlation Tn. This second cross-correlation brings frequency synchronization
to within 1 Hz. The time and frequency corrections determined by the two cross-correlations are then
applied to the corresponding candidate data set to establish the desired synchronization.

Before attempting to decode the message contained in the 58 information bins, the ft8b subroutine makes a
final quality check of the optimized synchronization. A sequence of 79 time-partitioned FFTs is performed
at the time slot of every tone in the entire candidate signal. Each 160 ms symbol has 32 sample points
that are used by the FFT algorithm to calculate its complex spectrum. The first 8 points in the FFT data
array correspond to the energy content in the 8 FT8 tones; only these 8 frequency bins are of interest. The
FT8 tone with the largest magnitude is assigned to that bin. In this way, the 21 synchronization bins are
assigned one of the FT8 tones. The information bins are evaluated with a separate procedure.



Figure 11: Simulated cross-correlations using a single FT8 Costas Array [3,1,4,0,6,5,2]. A noise-free, perfectly
phase-aligned correlation is depicted with the solid black line. The dashed curves are for signals having carrier phase
randomly aligned with the reference plus additive Gaussian white noise; signal-to-noise 2:1.

The next step is to compare the tones that have been assigned to bins 1–7, 37–43, and 73–79 with the tones
expected for the Costas Array, i.e. the tone sequence 3,1,4,0,6,5,2 as shown in Figure 6. Three error-free
sequences results in the maximum possible 21 matches. Because of the powerful Forward Error Correction
present in the coded messages, the decoder can reliably proceed with as little as 7 matches. Fewer than 7
matches will cause the decoder to give up and evaluate the next candidate.
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http://www.sportscliche.com/wb2fko/tech.html


References

[1] J. Taylor, S. Franke, B. Somerville “Work the World with WSJT-X, Part 2: Codes, Modes, and
Cooperative Software Development”, QST (Nov. 2017)

[2] J.P. Costas, “A study of a class of detection waveforms having nearly ideal range-doppler ambiguity
properties”, Proc. IEEE 72, 996 (1984).

[3] S.W. Golomb and H. Taylor “Construction and properties of Costas arrays”, Proc. IEEE 72, 1143
(1984).

[4] J. Taylor, S. Franke, B. Somerville “The FT4 Protocol for Digital Contesting”, WSJT-X Developer
Technical Note (April 22, 2019).

[5] B.P. Flannery, S. Teukolsky, W.T. Vetterling, W.H. Press, Numerical Recipes in FORTRAN: The
Art of Scientific Computing, Cambridge:NY (1997).

[6] The simulation ignores leakage resulting from windowing in the inverse FFT.


