IS TROPOSPHERIC DUCTING A MYTH?

Mike Hasselbeck WB2FKO

Central States VHF Society Conference 2025

What this presentation is about:

- Radio-wave propagation in troposphere using ray tracing
- Critical examination of existing thinking about ducting
- Propose an alternative explanation

What is Tropo-Ducting?

An <u>explanation</u> for long-haul DX observed at VHF+

Characteristics of the DX path:

- Higher frequencies work better; no ducting below 50 MHz
- Paths can exceed 1000 km
- Rare occurrence; form along weather fronts
- Openings may last for hours or even days

THREE-HOUR UHF OPENING BEHIND COLD FRONT*

*E. Pocock W3EP, "The weather that brings VHF DX" QST (May 1983)

Online Hepburn Tropo Index Maps

Ground-based duct according to W. Hepburn

Signals bend down and reflect off the ground. RX receives signal from TX. Radar shows strong ground clutter.

W. HEPBURN

Elevated duct-waveguide according to W. Hepburn

Signals trapped in an elevated duct No signal received at RX, but occasionally signals escape the duct.

W. HEPBURN

Elevated duct-waveguide

Gordon West Explains Tropospheric Ducting

Q

Ducting according to Rohde & Schwarz

- ▶ Tropospheric ducts can propagate signals from lower VHF frequencies to UHF and above
- ► The width of the duct (inversion) affects the frequencies they can propagate
 - Thinner ducts propagate higher frequency signals
- Ducts sometimes become thicker over time
 - Allow propagation of lower frequency signals
 - A newly formed duct may first propagate higher frequency signals and then later begin propagating lower frequency signals

Understanding Tropospheric Ducting

Save

Radar and radio waves can be analyzed using techniques of optical physics

REFRACTION: Deflection in the path of an electromagnetic wave as it passes through different media

Index of refraction

Air: 1.0

Water: 1.33

Glass: 1.5

Willebrord Snellius: 1580--1626

Snell's Law of Refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Total Internal Reflection in Glass Optical Fiber

For $\theta_1 > 41^o$ Snell's Law has no solution!

No refraction occurs at boundary – these rays are completely reflected

TOTAL INTERNAL REFLECTION:

Laser light launched into liquid Laminar flow streams

Courtesy of Dr Alexander Albrecht, UNM Physics & Astronomy

PROPERTIES OF THE TROPOSPHERE

Lower atmosphere: 0–15 km

Negligible plasma density. No ionization

Refractive index depends on temperature, pressure, humidity

Variation of index is minuscule*: 1.00025 – 1.00035

Refractive index does **NOT** depend on radio frequency

*Index of vacuum space: 1.00000

Critical angle is 89.2 degrees at planar inversion boundary*

Only angles ≤ 0.81 degrees are reflected!

*See Friis et al, Bell Systems Technical Journal (1957)

Calculation for three different inversion layer altitudes

High reflection only possible with extreme grazing angles and very low altitude inversions!

PROBLEM 1: Obstacles and ground reflections inhibit horizontal (0 degrees) antenna radiation

G0KSC 14-element LFA 144 MHz*

Yagi mounted at height 10m

Primary lobe at **2.9 degrees** elevation

Very poor coupling into duct!

*g0ksc.co.uk

Can properly shaped air masses help couple antenna radiation into the duct?

Even in best case, refraction in air is too weak to bend rays needed amount

PROBLEM 2: Does the waveguide picture of a tropo-duct make sense?

$$432 \text{ MHz} = 70 \text{ cm}$$

Waveguide cutoff requires spacing of about one wavelength

Surface flatness $< \lambda / 10$

Can this structure be maintained for hours or even days?

Realistic thermal boundary

Convective air currents quickly smear out the interface

Waveguide-like ducting is physically implausible

Another explanation?

Refractive Index Gradient:

Index decreases continuously with altitude

Index Gradient: Well known in radar Causes rays to bend

Gradient in nominal conditions: -39 x 10⁻⁶ km⁻¹ Ray bending but no trapping Implications for radar

Trapping is caused by total internal reflection at path apex

Critical angle attained between adjacent index layers

Reflection back to earth surface

Beyond line-of-sight communication possible

TRAPPING depends critically on antenna takeoff angle!

Calculate minimum index gradient needed to induce trapping

MINIMUM TRAPPING GRADIENT

0 degrees: $-157 \times 10^{-6} \text{ km}^{-1}$

1 degree: $-278 \times 10^{-6} \text{ km}^{-1}$

Nominal: $-39 \times 10^{-6} \text{ km}^{-1}$

Set the refractive index gradient at: -332 x 10⁻⁶ km⁻¹

Calculate ray paths for takeoff angles 0.5 – 1.2 degrees

Can we combine these concepts?

Refractive index gradient inside shaped air mass

No, this doesn't work...

Analysis shows index variations in atmosphere are insufficient to adequately bend radio waves

SUMMARY

- 1) Refraction in troposphere is extremely weak and independent of frequency
- 2) Waveguide-Duct model of VHF+ DX:
 - Requires nearly horizontal antenna takeoff angles
 - Requires smooth, long-term-stable thermal boundaries
- 3) Trapping model of VHF+ DX:
 - Requires nearly horizontal antenna takeoff angles
 - Requires enormous, long-term-stable refractive index gradients
 - Can't explain observed frequency dependence

Tropo-scatter: Two well-equipped VHF+ stations can *routinely* communicate over significant path lengths

Weather occurs at lower altitude

What should we expect when a warm air layer overruns cool air?

THIS?

OR THIS?

Turbulent Interface:

Extended volume containing pockets or blobs of cool-warm air mixtures

Is tropo-ducting actually chordal scattering* along the turbulent weather front?

"A Theory of Radio Scattering in the Troposphere" (1950)

Henry Booker (1910–1988)

William Gordon (1918–2010)

Scattering angle* depends on the ratio: Size of Turbulent Blobs ÷ Wavelength

Shorter wavelengths get forward-scattered

^{*} Scattered angle is relative to incident ray path

OTHER ADVANTAGES OF SCATTERING MODEL

- 1) Efficiency increases at lower altitude due to higher air density Scales as Δn^2 which primarily depends on temperature Turbulent mixing of warm and cool air
- 2) Frequency-dependence of DX path explained Scattering inversely proportional to wavelength: $1/\lambda$

Normal Tropo-Scatter vs Proposed Chordal Scattering

NORMAL

CHORDAL

Scatter sites	1	2 or more
Scatter altitude	Up to 15 km Low density air: Weaker scattering	< 1 km High density air: Stronger scattering
Scatter angle (θ)	Smaller: Weaker forward scattering	Wider: Stronger forward scattering
Temperature variation	Minimal: Weak scattering	Turbulent mixing of dense cool and warm air: Strong scattering

Proposed Explanation: Elevated Duct

Thickness: ~ 200 m (1974 study by USN)

40 hops & 78 reflections needed to span path*

* Drawing not to scale

Elevated Duct should generate big signals on HF!

Signals 1.8 – 50 MHz will see enhanced propagation

Better Explanation: Troposcatter + Seawater Reflection Path covered in 12 hops*

- Scatter efficiency scales as $1/\lambda$

* Drawing not to scale

Combination of Chordal Forward Scattering and Seawater Reflection*

CONCLUSIONS

- 1) Waveguiding and ducting cannot be reconciled with known refraction of the lower atmosphere
- 2) Extreme DX that occurs at VHF+ frequencies may be explained by scattering from turbulent pockets of warm-cool air mixtures that are present along extended weather fronts